
Chapter 9
Modulation Classification

Jon Hamkins and Marvin K. Simon

Modulation classification is the process of deciding, based on observations
of the received signal, what modulation is being used at the transmitter. It has
long been an important component of noncooperative communications in which
a listener desires to intercept an unknown signal from an adversary. It is also be-
coming increasingly important in cooperative communications, with the advent
of the software-defined autonomous radio. Such a radio must configure itself,
including what demodulator to use, based on the incoming signal.

In this chapter, we analyze the performance of optimum and sub-optimum
modulation classifiers to discriminate M -ary phase-shift keying (M -PSK) from
M ′-ary phase-shift keying (M ′-PSK). The measure of performance to be used is
the probability of misclassification, i.e., the probability of deciding that M -PSK
was transmitted when in fact M ′-PSK was transmitted, or vice versa.

After dispensing with preliminaries in Section 9.1, we continue in Section 9.2
with a presentation of approximations to the maximum-likelihood (ML) classi-
fier to discriminate between M -ary and M ′-ary PSK transmitted on an additive
white Gaussian noise (AWGN) channel and received noncoherently, partially co-
herently, or coherently, and when symbol timing is either known or unknown.
A suboptimum classifier is shown to be ten times less complex than the ML
classifier and has less than 0.1 dB of performance loss for symbol signal-to-noise
ratios (SNRs) in the range (−10,10) dB and any number of observed symbols.
Other methods are shown to reduce complexity by a factor of 100 with less than
0.2 dB of performance loss. We also present a classifier that does not require
an estimate of the symbol SNR, and in Section 9.3 we present a threshold op-
timization technique that improves the high-SNR performance of a previously
published classifier. Complexity of the classifiers is discussed in Section 9.4. In
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Section 9.5, we derive a classification error floor that exists for any classifier on
any memoryless channel, even a noiseless one, by deriving a lower bound on the
misclassification probability as a function of the number of observed samples.
In Section 9.6, we present numerical results of each of the classifiers along with
a summary comparison. In Section 9.7, we examine how symbol timing and
modulation type may be jointly estimated. In Section 9.8, we show that, for the
specific case of quadrature phase-shift keying (QPSK)/binary phase-shift keying
(BPSK) classification, the error floor does not occur if π/4-QPSK modulation is
used instead of QPSK. In Section 9.9, we follow the same ML approach as men-
tioned above for M -PSK (a special case of which is conventional QPSK) to derive
the optimum and approximate classifiers for offset quadrature phase-shift keying
(OQPSK) when received noncoherently over the AWGN. Examples are given for
the special cases of OQPSK/BPSK and minimum-shift keying (MSK)/QPSK
classifications. Finally, in Section 9.10, we discuss modulation classification in
the presence of a carrier frequency offset.

9.1 Preliminaries

9.1.1 Signal Model

For ease of exposition, this chapter is limited to binary hypothesis testing
in which each hypothesis occurs with equal a priori probability, although the
extension to multiple hypotheses and unequal a priori probabilities can be done
in the usual way [1]. Throughout, we assume M < M ′ and each is a power of two,
that the modulation type remains the same for N observed received symbols,
and that each point of the constellation is transmitted with equal probability.
The carrier phase, modulated data, and symbol timing are assumed unknown,
while M , M ′, the symbol duration, signal power, noise variance, and carrier
frequency1 are assumed known.

As in Eq. (1-7), the complex baseband representation of the received M -PSK
signal is

r̃(t) =
√

2Pt

∞∑
n=−∞

ej(θn+θc)p(t − nT − εT ) + ñ(t) (9 1)

where 2Pt is the known signal power of the complex baseband signal (the pass-
band power is Pt); θn = [2qn + (1 + (−1)M/2)/2]π/M is the data modula-
tion for the nth M -PSK symbol, with independent and uniformly distributed

1 Later on in the chapter, we shall consider modulation classification in the presence of a
residual carrier frequency error that may exist after frequency correction.
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qn ∈ {0, 1, · · · , M − 1); θc is the unknown carrier phase, uniform on [0, 2π);
p(t) is a pulse shape satisfying T−1

∫ T

0
p2(t)dt = 1; T is the known symbol dura-

tion; ε is the unknown fractional symbol timing, uniform on [0,1); and ñ(t) is a
complex AWGN process with two-sided power-spectral density N0 W/Hz per di-
mension (the passband process n(t) has two-sided power spectral density (PSD)
N0/2 W/Hz).

The complex observables corresponding to the matched filter outputs at time
instants (n + 1 + ε̂)T, n = 0, 1, 2, · · · , N − 1 are given by

r̃n (ε̂) =
1
T

∫ (n+1+ε̂)T

(n+ε̂)T

r̃ (t) p (t − nT − ε̂T ) dt (9 2)

A sequence of N observables corresponding to N received symbols is denoted
by r̃rr(ε̂) =

(
r̃1(ε̂), · · · , r̃N (ε)

)
. When the timing is known, the matched filter sets

ε̂ = ε, which results in the observable

r̃n = r̃n(ε) =
√

2Pte
j(θn+θc) + ñn, n = 0, · · · , N − 1 (9 3)

where we have dropped the symbol-timing argument. We will use the known-
timing assumption throughout the remainder of the chapter, except in Sec-
tion 9.7. In Eq. (9-3), ñn = ñn,R + jñn,I is a complex Gaussian random variable
with mean zero, variance σ2 = N0/T per dimension,2 and independent compo-
nents. Initially, we assume that Pt and σ2 are known at the receiver, although
we will drop that assumption later. For convenience, we denote the symbol SNR
as

γs =
Es

N0
=

Pt

σ2
=

PtT

N0
(9 4)

9.1.2 Conditional-Likelihood Function

The multivariate Gaussian probability density function of a complex vector x
with mean mx has the form [2, Eq. 2.99]

p(x) =
1

πN |C| exp
[
−(x − mx)∗T C−1(x − mx)

]
(9 5)

2 See Section 11.1 for a more detailed description of the noise variance in the discrete-time
model.
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where C is the covariance matrix. The covariance matrix for r̃rr, given M , θθθ =
(θ0, · · · , θN−1), and θc, is C = 2σ2I, where I is the N ×N identity matrix. Thus,
the conditional probability density function of the complex baseband received
signal r̃rr, given Pt, N0, M , θθθ, and θc, is

p(r̃rr|M,θθθ, θc) =
1

(2πσ2)N
exp

(
− 1

2σ2

N−1∑
n=0

∣∣∣r̃n −
√

2Pte
j(θn+θc)

∣∣∣2
)

(9 6)

This may be rewritten as

p(r̃rr|M,θθθ, θc) = C exp

(
−Nγs + Re

{√
2Pt

σ2
e−jθc

N−1∑
n=0

r̃ne−jθn

})
(9 7)

where C does not depend on M and, therefore, drops out of the ratios we are
about to form. When Eq. (9-7) is averaged over θθθ, we obtain what we refer
to as the conditional-likelihood function (CLF), i.e., the conditional probability
density function of the received vector signal r̃rr, given M and θc. This is given
by [3, Eq. B.3b]

CLFM (θc) = C exp

⎡
⎣−Nγs +

N−1∑
n=0

ln

⎛
⎝ 2

M

M
2 −1∑
q=0

cosh
[
xn(q; θc)

]⎞⎠
⎤
⎦ (9 8)

where xn(q; θc) = (
√

2Pt/σ2)Re
[
r̃ne−j(θc+[2q+(1+(−1)M/2)/2]π/M)

]
. We may

rewrite Eq. (9-8) as

CLFM (θc) = Ce−Nγs

(
2
M

)N N−1∏
n=0

M
2 −1∑
q=0

cosh
[
xn(q; θc)

]
(9 9)

9.2 Modulation Classifiers

9.2.1 ML Classifiers

The ML modulation classifier results in the minimum probability of classi-
fication error if the modulation types occur with equal a priori probability. It
can be implemented by comparing the likelihood ratio (LR) of the N observed
samples to a unity threshold.
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9.2.1.1 ML Noncoherent Classifier Averaging over Data, then Carrier
Phase. The CLF in Eq. (9-9) has already been averaged over the unknown data.
The LR for the M and M ′ hypotheses is given by averaging over θc, which is
uniform over [0, 2π), and forming the ratio

LR =
LFM

LFM ′
=

Eθc

{
CLFM (θc)

}
Eθc

{
CLFM ′(θc)

} (9 10)

To compute the expectations in Eq. (9-10), typically hundreds of function eval-
uations are needed. In doing this,

√
2Pt/σ2 must be known to compute xn(·; ·).

Note that γs = Pt/σ2 alone is not sufficient to determine
√

2Pt/σ2.

9.2.1.2 ML Noncoherent Classifier Averaging over Carrier Phase, then
Data. Alternatively, we may average Eq. (9-7) over the carrier phase first. To
do this we rewrite Eq. (9-7) in the form

p
(
r̃rr |M,θθθ, θc

)

= C exp

⎛
⎜⎝−Nγs + Re

⎧⎪⎨
⎪⎩

√
2Pt

σ2

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣ e
−j

[
θc−arg

(
N−1∑
n=0

r̃ne−jθn

)]⎫⎪⎬
⎪⎭

⎞
⎟⎠(9 11)

= C exp

{
−Nγs +

√
2Pt

σ2

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣ cos

[
θc − arg

(
N−1∑
n=0

r̃ne−jθn

)]}
(9 12)

Averaging over the uniform distribution of θc gives

p (r̃rr |M,θθθ ) = exp (−Nγs) I0

(√
2Pt

σ2

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣
)

(9 13)

where I0 (x) is the zero-order modified Bessel function of the first kind with
argument x. Next we average over the data phase sequence to obtain

LFM = p (r̃rr |M ) = E
θθθ

{
Ce−NγsI0

(√
2Pt

σ2

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣
)}

(9 14)

This is feasible for small values of N , i.e., when the MN values of θθθ are relatively
manageable.
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9.2.1.3 ML Coherent/Partially Coherent Classification. In coherent re-
ception, the carrier phase θc is known, and the expectation in Eq. (9-10) degen-
erates to an evaluation of the CLF at a single point:

LR =
CLFM (θc)
CLFM ′(θc)

This is the optimum statistic for ML classification with coherent reception.
In partially coherent reception, only partial knowledge is available about the

carrier phase and thus the randomness is not completely removed. We may
account for this in the classifier by using a distribution on θc that is different
from the uniform distribution assumed in noncoherent reception. For example,
a phase-locked loop that tracks a residual carrier may produce an error in its
carrier phase estimate that is Tikhonov distributed [4,5]. Other randomness,
due to oscillator phase noise, intersymbol interference, or phase ambiguities, for
example, may also introduce nonuniform randomness to θc.

9.2.2 Suboptimum Classifiers

9.2.2.1 Coarse Integral Approximation in the LR. One way to compute
Eq. (9-10) is to accurately numerically evaluate the integrals in each of the
numerator and denominator. One can see from Eq. (9-9) that the period of
CLFM (θ) is 2π/M . Thus, we can write the likelihood function (LF) for hypoth-
esis H ∈ {M, M ′} as3

LFH =
H

2π

∫ 2π/H

0

CLFH(θ)dθ ∼= 1
I

I∑
i=1

CLFH

(
2iπ

IH

)
(9 15)

where the last approximation becomes an equality as I → ∞ by the rectangular
rule for integration. Standard integration algorithms [6] reduce computation by
using a nonuniform partition of the interval, but even then, typically more than a
hundred CLF evaluations are needed for an accurate integral evaluation. For the
problem at hand, however, we needn’t necessarily evaluate the integrals accu-
rately. For example, for random realizations of r̃rr, CLF2(θc) and CLF4(θc) often
differ by more than an order of magnitude. If one of the CLFs is higher than the
other for the entire range θc ∈ [0, 2π), then a single test (i.e., I = 1) comparing
CLFM (θ) to CLFM ′(θ) at any θ would produce the correct classification. While

3 Note that Eq. (9-15) could have been written as 1/I
∑I

i=1
CLFH(2iπ/(IM)]), since M < M ′,

in which case the sample points of CLFM′ corresponding to the uniform quantization of θc

would be the same as those of CLFM .
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this property does not hold with high enough probability to produce near-ML
performance, we may set the tunable parameter I in Eq. (9-15) to values sub-
stantially smaller than required to obtain accurate integral evaluations, without
significantly affecting classifier performance. This technique has also been used
for MFSK classification [7].

9.2.2.2 The Generalized Likelihood Ratio Test. When I = 1 in the method
above, the complexity is low, but the performance is poor. However, we can use
I = 1 and still get near-ML performance by suitably choosing the single value
of θc at which to evaluate CLFM . In particular, one can use r̃rr to estimate θc in the
M -PSK hypothesis, specifically using its Mth power to remove the modulation,
averaging over the data symbols, and then normalizing the resulting angle:

θ̂(M)
c =

1
M

arg
N−1∑
n=0

r̃M
n (9 16)

where arg(z) denotes the angle of the complex quantity z. Equation (9-16) is
the ML estimate of θc for low SNR, in the sense that it results from low-SNR
approximations of the true ML estimate θcML for M -PSK [8]. A decision based
on the likelihood ratio CLFM (θ̂(M)

cML )/CLFM ′(θ̂(M ′)
cML ) results from what is referred

to as a generalized likelihood ratio test (GLRT). A different GLRT arises when
r̃rr is used to estimate θθθ before classification [9]. We appropriately define the test
based on LR = CLFM (θ̂(M)

c )/CLFM ′(θ̂(M ′)
c ) as a quasi-generalized-likelihood ra-

tio test (qGLRT), and it is a good approximation to Eq. (9-10) in the sense
of being an approximation to coherent-reception classification. The carrier es-
timates in the two hypotheses are used with the same basic reasoning as in
per-survivor processing, the method used to perform joint channel estimation
and decoding. The phase ambiguities present in these estimates of θc, namely,
a 2π/M (2π/M ′) rad ambiguity for the M -PSK (M ′-PSK) hypothesis, do not
cause a problem because, as previously mentioned, the CLFs are also periodic
with period 2π/M(2π/M ′).

9.2.2.3 Normalized Quasi-Log-Likelihood Ratio (nqLLR). All other
things being equal, we would prefer a classifier that requires the least knowl-
edge of channel parameters. If a classifier required only γs, for example, it would
be preferred over one requiring Pt and σ2 separately. Unfortunately, all of the
classifiers discussed so far (ML, coarse integral approximate ML, qGLRT) re-
quire knowledge of both

√
2Pt and σ2 individually, and not simply their ratio.
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We now discuss a classifier requiring knowledge of fewer parameters. We be-
gin with the quasi-log-likelihood ratio (qLLR) approximation to the LLR [3,10]:4

qLLR =

∣∣∣∣∣
N−1∑
n=0

r̃M
n

∣∣∣∣∣ (9 17)

This arises from Eq. (9-10) using the low SNR approximations cosh(x) ∼= 1+x2/2
and ln(1 + x) ∼= x, along with the approximation ln I0(x) ∼= x for large post-
detection SNR. Although from its definition the qLLR itself does not require
knowledge of Pt and σ2, its use in making a classification decision requires such
knowledge to compute the proper threshold (see Section 9.3). This requirement
is avoided by using a normalized qLLR (nqLLR) metric:

nqLLR =

∣∣∣∑N−1
n=0 r̃M

n

∣∣∣∑N−1
n=0 |r̃n|M

(9 18)

Like the qLLR, this metric does not itself require knowledge of Pt, σ2, or the
ratio γs = Pt/σ2; however, unlike the qLLR, the optimum threshold for it is also
invariant to scale changes in r̃rr—doubling r̃rr does not affect the nqLLR metric,
for example—and it is fairly insensitive to variations of Pt or σ2 as well [11,12].

9.3 Threshold Optimization

9.3.1 Suboptimality of Previously Derived Thresholds

A critical limitation of the qLLR metric is that it does not approximate the
LLR metric precisely enough for the optimum LLR threshold (zero) to be used
with success. Indeed, the qLLR metric is always nonnegative, meaning that with
a zero threshold (optimum for LLR), it would produce the same decision regard-
less of the transmitted modulation!

One can optimize the threshold for the qLLR metric itself, instead of using
the optimum threshold (zero) for the LLR metric. An approximate analytic
solution was given in [10], using the assumptions that the real and imaginary
parts of the sum in Eq. (9-17) are jointly Gaussian and have equal variance under

4 Note that the qLLR does not depend on M ′ since, as shown in [10], for M ′ > M , the
denominator of this approximate LLR is independent of M ′.



Modulation Classification 279

the two hypotheses. These assumptions lead to the optimized threshold of [10,
Eq. 37]:5

T = (2Pt)M/2VMI−1
0

[
exp

(
N

2VM

)]
(9 19)

where VM =
∑M

l=0[(M !)2γ−l
s /(2l![(M − l)!]2]), and I−1

0 (x) denotes the inverse of
the function I0(x). However, the equal-variance approximation breaks down at
high SNR. For example, in BPSK/QPSK classification, the variance of the real
part of the sum in Eq. (9-17) is 2PtV2 when BPSK is sent and 2Pt(V2 + 1) when
QPSK is sent [10, Eq. (A.12)]. At high SNR, V2

∼= 1/2, and thus the variance
is nearly three times higher when QPSK is sent. A similar comparison shows
the variance of the imaginary part is nearly twice as high when QPSK is sent.
Therefore, although the threshold in Eq. (9-19) may be near-optimum at low
SNR, at high SNR it will be too low.

The further approximation I0(x) ∼= ex, valid for large x (high post-detection
SNR), leads to the approximate threshold [10, Eq. 38]

T =
N(2Pt)M/2

2
(9 20)

This approximate threshold actually outperforms the “optimum” threshold in
Eq. (9-19) for γs > 4 dB.

9.3.2 Empirical Threshold Optimization

The analytical derivation of appropriate thresholds for the qLLR in
Eqs. (9-19) and (9-20) depended on the particular form of the metric, and in-
volved some approximation. As an alternative, we present an empirical method
to optimize the threshold that can be used for any classifier metric, including the
qLLR and nqLLR metrics. Empirical threshold optimization has been briefly
mentioned in M -PSK classification work [13] and in QAM classification [14].
However, the degree to which the analytic, approximate thresholds Eqs. (9-
19) and (9-20) degrade performance has not been noted. Indeed, the fact that
the “approximate” threshold Eq. (9-20) outperforms the “optimum” threshold
Eq. (9-19) at high SNR is an indication that the assumptions in the derivation
break down at high SNR.

5 The original presentation in [10] used r̃rr/σ in place of r̃rr in the qLLR metric in Eq. (9-17), so
that for each n, the noise variance of r̃n was unity in each dimension, not σ2. To account for
the difference, the thresholds we give in Eqs (9-19) and (9-20) are a factor σM = (N0/T )M/2

times what was in the original presentation in [10].
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Empirical threshold determination consists of the following process:

(1) Generate a large number of received noisy M -PSK and M ′-PSK
samples according to Eq. (9-3).

(2) Group the samples into blocks of length N , and compute a set of
sample classifier metrics (e.g., by Eq. (9-17) for the qLLR classifier).

(3) Sort the metrics for M -PSK and M ′-PSK received symbols sepa-
rately, in order of increasing value.

(4) For each observed metric of value α, in increasing order:

(a) Count the number of observed M -PSK metrics having value less
than α.

(b) Count the number of observed M ′-PSK metrics having value
greater than α.

(c) Compute the probability of misclassification when using thresh-
old α, using the sum of the above counts.

(5) Report the threshold that minimizes the probability of misclassifi-
cation.

This procedure may be implemented efficiently enough that a desktop machine
can generate about 100 million samples and determine an empirically optimum
threshold in less than an hour. The following additional points should be noted:

(1) Threshold optimization need be performed only once, offline. In a
practical implementation, given N and γs, a table look-up may be
used to determine the threshold.

(2) The optimum threshold for the LR metric and its approximation in
Eq. (9-15) is zero and requires no empirical optimization.

(3) The optimum threshold for the qLLR metric for BPSK/QPSK clas-
sification is relatively flat over a broad region of γs, being near 0.6
for γs > −5 dB. This is a desirable characteristic, because γs may
not be known exactly.

(4) The optimum threshold for the nqLLR metric is also quite flat, and
ranges only from about 0.15 to 0.6 for −10 dB < γs < 10 dB. At
high SNR, it is approximately equal to the optimum qLLR/(2NPt)
threshold, because the qLLR/(2NPt) metric and the nqLLR metric
are nearly identical in that region. Thus, the nqLLR and qLLR clas-
sifiers have similar performance, and the nqLLR has the advantage
that neither Pt nor σ2 need be known.
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To see how the nqLLR classifier may be used without any knowledge of Pt

or σ2, consider the problem of BPSK/QPSK modulation classification. As per
Eq. (9-20), for BPSK/QPSK classification, the qLLR metric can be compared
to a threshold of NPt. Since

∑N−1
n=0 |r̃n|2 is a good estimate of NPt, the nqLLR

classifier may be compared to 0.5, and gives performance about the same as the
qLLR classifier. In fact, optimum thresholds for the nqLLR classifier were found
to range only between 0.15 and 0.6 for Pt ∈ (0,∞). This compares to optimum
thresholds between 0 and ∞ for the qLLR classifier.

9.4 Complexity

9.4.1 ML Classifier

It is suggested in [3,10] that the ML classifier is not practical. However, if
computation of Eθc

{CLF(θc)} requires only a constant number of evaluations of
CLF(θc), then Eq. (9-10) can be computed in O(N) time. This is because, under
either hypothesis (M -PSK or M ′-PSK), CLF(θc) is a product of N items, each of
which can be computed in O(1) time. In simulations with N = 100, M = 2, and
M ′ = 4, it was found that 100 to 150 CLF evaluations were needed to compute
the expectation, or about 100,000 hyperbolic cosine function evaluations overall.

Unfortunately, it is not true that a simple computation of Eθc{CLF(θc)} can
be computed in O(N) time, because the CLF(θc) has first derivatives that are
exponential in N , and thus the numerical computation of the integral requires
finer partitions for higher values of N . This exponential relationship can be seen
as follows. By elementary calculus, the first derivative of CLF2(θc) is

CLF′
2(θc) = Ce−Nγs

N−1∑
l=0

{
sinh

[√
2Pt

σ2
Re

(
r̃le

−jθc
)] √

2Pt

σ2
Im

(
r̃le

−jθc
)

×
N−1∏

n=0,n �=l

cosh
[√

2Pt

σ2
Re

(
r̃ne−jθc

)]⎫⎬
⎭ (9 21)

If θc is small, the SNR is large, and r̃rr =
√

2Pt · (1, · · · , 1), then keeping terms of
first order in θc in Eq. (9-21) yields

CLF′
2(θc) ∼= −2CNγsθc

(
eγs

2

)N

(9 22)



282 Chapter 9

Since CLF′(θc) can be exponential in N , no numerical integration that partitions
the domain of the integral into a number of intervals independent of N will
produce a correct calculation as N increases. That is, for higher values of N ,
a finer partition of the domain is required and thus an increasing number of
evaluations of the CLF. Therefore, computing the LR in this way requires more
than O(N) time.

9.4.2 Coarse Integral Approximate ML classifier

The approximate ML metric of Eq. (9-15) may be computed in O(IN) time
because it is the sum of I terms, each of which is a product of N terms, each of
which takes O(1) time to compute. If the integration range is partitioned in the
same way under each hypothesis, each hyperbolic cosine evaluation used in the
numerator of Eq. (9-10) is also used in the denominator, and thus, only M ′/2
hyperbolic cosine evaluations are needed for each (i, n) pair. Also, we may write

xn

(
q;

2iπ

IM

)
=

√
2Pt

σ2

[
Re[r̃n] cos

(
α(q, i)

)
+ Im[rn] sin

(
α(q, i)

)]

where α(q, i) = 2π(i/I + q)/M . The trigonometric terms for all α(·, ·) may be
precomputed and stored in a table, since they do not depend on r̃rr. Thus, only
addition, multiplication, and M ′/2 hyperbolic cosine evaluations are required for
each (i, n) pair.

9.4.3 qGLRT Classifier

The qGLRT estimator/classifier uses I = 1, which offers a speed advantage
by a factor of 12 over the I = 12 case discussed above. It also requires the two
phase estimates, however. These take O(N) to compute and were observed to
roughly cut the speed gain in half, i.e., 6 times faster than the I = 12 case.

9.4.4 qLLR and nqLLR

The qLLR and nqLLR classifiers also have O(N) complexity, the lowest com-
plexity of those considered in this chapter. They do not require any exponential,
logarithmic, and trigonometric function evaluations—only multiplication, divi-
sion, and magnitude operations. As a result, they were observed to offer speed
increases of two orders of magnitude over ML classification.

The qLLR metric with threshold given by Eq. (9-19) or Eq. (9-20) requires
knowledge of both Pt and σ2. The approximate threshold of Eq. (9-20) performs
worse but does not require knowledge of σ2. The nqLLR classifier benefits from
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knowledge of γs, but not from knowing Pt and σ2 individually. Furthermore,
among all classifiers considered, it is unique in providing acceptable performance
without knowledge of either Pt or σ2. If we set a fixed threshold of 0.4, perfor-
mance is within approximately 1 dB of the ML classifier at γs = 1 and within
3.5 dB at very low γs.

9.5 Classification Error Floor
As we will see in Section 9.6, the ML classifier for N = 10 appears to exhibit

a classification error floor at about 0.001. In this section, we analytically verify
the validity of this observation by proving that an error floor of 2−N occurs for
BPSK/QPSK classification, which for N = 10 is about 9.8 × 10−4. We also
provide a more general error floor derivation for M -PSK/M ′-PSK classification.
The error floor can be explained by the probability that a randomly generated
M ′-PSK signal N -vector is consistent with an M -PSK transmission. The prob-
ability of this event can be obtained using the method of types [15]. This error
floor exists for any M -PSK/M ′-PSK classifier and gives an immediate lower
bound on the number of observations N that must be made in order to achieve
a given classification error rate, even when no channel impairments are present.

Theorem 9-1. If N independent complex baseband symbols from an a priori
equiprobable M -PSK or M ′-PSK signal, M < M ′, are observed at the output
of a noncoherent noiseless channel, the minimum probability of modulation mis-
classification is (M/M ′)N−1/2.

Proof. Let r̃n be as in Eq. (9-3), with M -PSK and M ′-PSK equiprobable and
ñn = 0 for all 0 ≤ n ≤ N − 1. Since θc is uniformly distributed, r̃n is uniformly
distributed on the circle of radius

√
2Pt, regardless of θn. Thus, when N = 1

the observed signals for M -PSK and M ′-PSK are identically distributed and the
minimum misclassification probability is 1/2.

Now suppose N > 1. Let bbb = (b0, · · · , bN−1), where bn = θn + θc. From
(r̃0, · · · , r̃N−1), we may ascertain Pt and bbb, and vice versa. Since Pt does not
depend on the modulation order, bbb is a sufficient statistic for the optimum
(minimum probability of misclassification) classifier. If there exists some n,
0 < n ≤ N −1, such that bn �= b0 mod 2π/M , then the signal cannot be M -PSK,
and the optimum classifier decides that M ′-PSK was sent, with no probability of
error. Otherwise, for all n = 0, · · · , N−1, bn = b0 mod 2π/M . Under the M -PSK
hypothesis, P (bn = b0 mod 2π/M |M -PSK) = 1. Under the M ′-PSK hypothesis,
for n > 1, P (bn = b0 mod 2π/M |M ′-PSK) = M/M ′, since bn − b0 mod 2π/M

takes on the M ′/M values in {0, 2π/M ′, 2 · 2π/M ′, · · · , ((M ′/M) − 1) · 2π/M ′)}
with equal probability. By the independence of the modulation symbols,
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P (b0 = · · · = bN−1 mod 2π/M |M ′-PSK) =
(

M

M ′

)N−1

Thus, for all N > 1, the M -PSK-consistent event more probably arises from
M -PSK than from M ′-PSK, and the optimum classifier decides M -PSK. In sum-
mary, the optimum classifier is incorrect with probability

Pe = P (M ′-PSK)Pe|M ′-PSK + P (M -PSK)Pe|M-PSK

=
1
2
·
(

M

M ′

)N−1

+
1
2
· 0 =

1
2

(
M

M ′

)N−1

❐

Corollary 9-1. If N independent complex baseband symbols from an a priori
equiprobable BPSK or QPSK signal are observed at the output of a noncoherent
noiseless channel, the minimum probability of modulation misclassification is
2−N , which constitutes an error floor.

Corollary 9-2. Achieving probability of BPSK/QPSK misclassification be-
low 10−6 requires N ≥ 20 observed samples.

Proof. 2−20 ∼= 9.54 × 10−7. ❐

9.6 Numerical Results
To illustrate the numerical performance of the proposed noncoherent clas-

sifiers, we consider the example of M = 2 and M ′ = 4, i.e., BPSK/QPSK
classification, when the timing is known. The classifiers were each implemented
in the C programming language.

The simulated performance of the ML BPSK/QPSK classifier is shown in
Fig. 9-1, for various numbers of observed symbols N . The classification error
floor of Theorem 9-1 is evident, and the high-SNR asymptote can be seen to be
2−N .

The classifier based on coarse integral approximation with I = 12 is shown
in Fig. 9-2 for various values of N . The coarse integral method has performance
indistinguishable from that of ML classification, and reduces the complexity
(number of CLF function-evaluations) by an order of magnitude. A C imple-
mentation on a Linux desktop computer required approximately 11 milliseconds
to compute the ML classification metric, and 1 millisecond to compute the coarse
integral approximation metric with I = 12.
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Fig. 9-1.  ML BPSK/QPSK classification performance for various N.
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Fig. 9-2.  The performance of the ML and coarse integral classifier with I  = 12.
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For smaller values of I, performance begins to degrade. When I = 5, speed
increased approximately by a factor of 12/5 compared to I = 12, and perfor-
mance was similar except at high SNR, where it degraded by about 0.4 dB, as
can be seen in Fig. 9-3. When I = 1, the classifier fails, but by choosing the
single CLF evaluation point using the qGLRT, the performance improves. At
high SNR, it is virtually in agreement with the ML performance, because the
estimates of θc are quite good. At low SNR, the performance degrades slightly.
The qGLRT classifier was found to be 61 times faster than the ML classifier.

For comparison, the ML coherent classifier is also illustrated in Fig. 9-3. The
performance is within 0.5 of the ML noncoherent classifier over a wide range of
SNR.

The effect of threshold optimization is shown in Fig. 9-4. The qLLR metric
used with either of the proposed thresholds in [10] results in a classifier whose
gap from ML increases with increasing Es/N0. In fact, the analytically de-
rived threshold is outperformed by its approximation when Es/N0 > 4 dB! The
empirical optimization of the threshold reduces the gap from about 2.5 dB, at
Es/N0 = 4 dB, to 1 dB.

The performance of the nqLLR classifier is also shown in Fig. 9-4. Although
the normalization in the nqLLR was motivated by reducing the number of pa-
rameters that need to be estimated—the nqLLR doesn’t require knowledge of
the noise variance—serendipitously, the normalization also has a beneficial ef-
fect in the classification performance itself. It can be seen from Fig. 9-4 that at
γs = 1 dB, the performance of nqLLR is 0.5 dB better than qLLR, and about
0.5 from the ML limit.

Fig. 9-3.  Noncoherent classifier performance as a function of I.
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Fig. 9-4.  Comparison of ML, coarse integral classifier with I = 12, 

nqLLR, and qLLR classifiers for various thresholds T.
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The values of the empirically optimized thresholds for the qLLR and
nqLLR are shown in Fig. 9-5. For low SNR, the empirically optimized threshold
for the qLLR metric closely matches the analytic threshold Eq. (9-19), as ex-
pected, since the analytic threshold was derived with a low-SNR approximation.
At higher SNRs, the optimum threshold is near 0.6, while both Eqs. (9-19) and
(9-20) converge to 0.5. The optimum nqLLR threshold also converges to
about 0.6, which is also expected because the nqLLR metric converges to the
qLLR metric at high SNR.

To evaluate classifier performance with imperfect symbol timing, we con-
sider the case of a fixed fractional symbol timing offset τ = (ε̂ − ε), where
τ ∈ (−1/2, 1/2). When two adjacent symbols are the same, the matched filter
output does not depend on the value of τ . On the other hand, when adjacent
signals are antipodal, the effective SNR at the matched filter output is degraded
by a factor 1 − 2|τ |. Thus, in the worst case, a classifier could be degraded by
10 log10(1 − 2|τ |) dB in SNR. Figure 9-6 shows this upper bound for the ML
BPSK/QPSK classifier when N = 100, as a function of τ .

Table 9-1 summarizes various attributes of the classifiers. The bold entries
highlight favorable performance-complexity trade-offs. If performance within
0.1 dB of the ML classifier is desired, the coarse integral method can achieve it
with a speed an order of magnitude higher than the ML classifier. For operation
within 0.2 dB, the qGLRT estimator/classifier or nqLLR classifier may be used,
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Fig. 9-5.  Dependence of empirically optimized thresholds on SNR.
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Fig. 9-6.  Upper bound on ML BPSK/QPSK classifier performance

for various fixed fractional symbol timing offsets τ.
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Table 9-1. A summary comparison of BPSK/QPSK noncoherent
classifiers, N = 100.

Needed dB gap to ML
Complexitya

parameters at γs =Classifier Equation Threshold
Ops Speed-up

γs Pt −5 −2 1

ML (9-10) 1
√ √

0 0 0 100,000 1

Coarse (9-15), I = 12 1
√ √

0.0 0.0 0.1 7,200 11

integral (9-15), I = 5 1
√ √

0.0 0.1 0.4 3,000 26

approx. (9-5), I = 1 1
√ √

4.0 5.5 8.5 600 132

to ML (9-15), I = 1, 1
√ √

0.8 0.4 0.2 600 61
qGLRT

qLLR (9-17) (9-19)
√ √

0.4 0.5 1.1 0 165

(9-20) —
√

1.7 1.3 1.7 0 165

Empirical
√ √

0.0 0.5 1.0 0 165

nqLLR (9-18) Empirical —
√

0.0 0.2 0.5 0 99

0.4 — — 3.5 2.0 1.0 0 99

a Ops is the number of exponential, logarithmic, trigonometric, or Bessel function evalu-
ations required. Speed-up is the observed relative speed compared to the ML classifier.

depending on the SNR, for a speed-up factor of 61 to 99 over the ML classifier.
If an SNR estimate is not available, the nqLLR metric can be used to operate
within 0.5 dB of the ML classifier, at a speed-up factor of 99 over ML. The qLLR
classifier is 165 times faster than ML, and can be used if losses larger than 1 dB
can be tolerated.

All classifiers are subject to an error floor that is a function of the number
of observed symbols, even on channels without impairments.

9.7 Unknown Symbol Timing
Thus far we have discussed exact and approximate likelihood-based nonco-

herent classifiers of M -PSK signals under the assumption of unknown (uniformly
distributed) carrier phase, but perfectly known fractional symbol timing. In this
section, we extend these classifiers to the case where the symbol timing is un-
known and also uniformly distributed.
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Following the same likelihood function approach as above, where we first av-
erage over the data symbol distribution, we eventually arrive at a CLF analogous
to Eq. (9-8), namely,

CLFM (θc, ε)
�= p (r̃rr |M, θc, ε )

= C exp

⎡
⎣−Nγs +

N−1∑
n=0

ln

⎛
⎝ 2

M

M/2−1∑
q=0

cosh
[
xn (q; θc, ε)

]⎞⎠
⎤
⎦ (9 23)

where ε denotes the unknown fractional symbol timing and

xn (q; θc, ε)
�=

√
2Pt

σ2
Re

{
r̃n (ε) e−j(2πq/M+θc)

}
(9 24)

Thus, a comparison between BPSK and QPSK would be based on the LR

LR =
E

θc,ε
{CLF2 (θc, ε)}

E
θc,ε

{CLF4 (θc, ε)}

=
E

θc,ε

{
exp

[
N−1∑
n=0

ln cosh
[
xn (0; θc, ε)

]]}

E
θc,ε

{
exp

[
N−1∑
n=0

ln
(

1
2

[
cosh

[
xn (0; θc, ε)

]
+ cosh

[
xn (1; θc, ε)

]])]} (9 25)

where from Eq. (9-24)6

xn (0; θc, ε)
�=

√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

}

xn (1; θc, ε)
�=

√
2Pt

σ2
Im

{
r̃n (ε) e−jθc

} (9 26)

It has previously been shown that an efficient way of evaluating the averages
over the unknown parameters, in this case θc and ε, is to apply a rectangular

6 We slightly abuse the notation xn(q; θc, ε) by not explicitly listing its dependence on M . In
this case, xn(0; θc, ε) for BPSK is the same as it is for QPSK, and xn(1; θc, ε) does not exist
for BPSK. For higher orders, one needs to be more careful.
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numerical integration rule. Since the CLF of Eq. (9-23) is periodic in θc with
period 2π/M , the LR of Eq. (9-25) can be expressed as

LR =
lim

I,J→∞

1
I

1
J

I∑
i=1

J∑
j=1

CLF2

(
iπ

I
,
j

J

)

lim
I,J→∞

1
I

1
J

I∑
i=1

J∑
j=1

CLF4

(
iπ

2I
,
j

J

) (9 27)

To reduce the complexity of Eq. (9-27) still further, it has also been suggested
one use I = 1 (and now also J = 1), i.e., evaluate the CLFs at a single value
of θc and ε, where these values are obtained as functions of the same set of
observables used to form the CLFs themselves. Perhaps the best set of values to
use are the ML estimates of these parameters. In principle, these ML estimates
should be obtained jointly by simultaneously maximizing the LF (or equivalently
its logarithm) with respect to both θc and ε. Specifically, for the numerator of
the LF we would use

θ̂c2, ε̂2 = argmax
θc,ε

N−1∑
n=0

ln cosh
[
xn (0; θc, ε)

]

= argmax
θc,ε

N−1∑
n=0

ln cosh
[√

2Pt

σ2
Re

{
r̃n (ε) e−jθc

}]
(9 28)

while for the denominator of the LF we would use

θ̂c4 , ε̂4 = argmax
θc,ε

N−1∑
n=0

ln
{

1
2

cosh
[√

2Pt

σ2
Re

{
r̃n (ε) e−jθc

}]

+
1
2

cosh
[√

2Pt

σ2
Im

{
r̃n (ε) e−jθc

}]}
(9 29)

Then, the low complexity LR to be used for classification would be given by

LR =
CLF2

(
θ̂c2 , ε̂2

)
CLF4

(
θ̂c4 , ε̂4

) (9 30)

which when compared to a threshold again results in a GLRT. A derivation of
the estimates θ̂c2 , ε̂2 and θ̂c4 , ε̂4 is contained in Appendix 9-A.
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9.8 BPSK/π/4-QPSK Classification
As previously discussed in Section 9-5, for noncoherent BPSK/QPSK clas-

sification, the misclassification probability exhibits an error floor in the limit of
large SNR. This occurs because, in the absence of noise, there is a finite prob-
ability that a sequence of N QPSK symbols could be identical (aside from a
possible fixed phase rotation over the entire sequence) to a given sequence of
N BPSK symbols, and thus the two modulations would be indistinguishable at
the receiver, where the classification decision takes place. If instead of trans-
mitting QPSK, one were to instead transmit π/4-QPSK [16] wherein the signal
constellation is rotated back and forth by π/4 rad every other symbol, then it
is no longer possible that a sequence of N QPSK symbols could be “identical”
to a given sequence of N BPSK symbols. As such, there would no longer be an
error floor in the misclassification probability performance.

In this section we investigate the ML and approximate ML algorithms ap-
propriate to a classification decision between BPSK and π/4-QPSK.

9.8.1 ML Noncoherent Classifier Averaging over Data,
then Carrier Phase

Analogous to the CLF for M -PSK in Eq. (9-9), one can derive the CLF of
π/4-QPSK as

CLFπ/4−4 (θc) = Ce−Nγs

(
1
2

)N N−1∏
n=1,3,5,···

1∑
q=0

cosh
[
xn (q; θc)

]

×
N−2∏

n=0,2,4,···

1∑
q=0

cosh
[
yn (q; θc)

]
(9 31)

where

xn (q; θc) =
√

2Pt

σ2
Re

{
r̃ne−j(θc+(2q+1)π/4)

}

yn (q; θc) =
√

2Pt

σ2
Re

{
r̃ne−j(θc+(2q+1)π/4+π/4)

}

=
√

2Pt

σ2
Re

{
r̃ne−jπ/4e−j(θc+(2q+1)π/4)

}
(9 32)



Modulation Classification 293

Since from Eq. (9-9) the CLF for BPSK would be

CLF2 (θc) = Ce−Nγs

N−1∏
n=0

cosh
[
xn (0; θc)

]
(9 33)

with xn (0; θc) =
(√

2Pt/σ2
)
Re

{
r̃ne−jθc

}
, then averaging over the uniformly

distributed carrier phase, the LR becomes

LR =
E
θc

{CLF2 (θc)}

E
θc

{
CLFπ/4−4 (θc)

} (9 34)

which can be evaluated numerically by the same approaches previously discussed
in Section 9.2.1.

9.8.2 ML Noncoherent Classifier Averaging over Carrier Phase,
then Data

Averaging first over the uniformly distributed carrier phase and then over
the data, the unconditional LFs become [also see Eq. (9-14)]

LF2 = E
q

{
Ce−NγsI0

(√
2Pt

σ2

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣
)}

,

θ1, θ2, · · · , θN ∈ (0, π)

LFπ/4−4 = E
q

{
Ce−NγsI0

(√
2Pt

σ2

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣
)}

,

θ1, θ3, · · · , θN−1 ∈
(

π

4
,
3π

4
,
5π

4
,
7π

4

)
,

θ2, θ4, · · · , θN ∈
(

0,
π

2
, π,

3π

2

)

(9 35)

and the corresponding LR becomes
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LR =
LF2

LFπ/4−4
(9 36)

9.8.3 Suboptimum Classifiers

9.8.3.1 The GLRT. As was the case in Section 9.2.2, finding the GLRT for the
π/4-QPSK/BPSK classifier relies on finding the ML estimates of carrier phase
for the two modulations under consideration. Following the approach taken
in Appendix 9-A, the solution for this estimate corresponding to π/4-QPSK
modulation is derived in Appendix 9-B with the result

θ̂c,π/4−4 =
1
4

arg

(
N∑

n=1

(
r̃ne−j π

4 In
)4

)
(9 37)

where In is the indicator variable defined by

In =
{

0, n odd
1, n even (9 38)

The form of θ̂c,π/4−4 is intuitively satisfying in that in the odd symbol inter-
vals the contribution of the observable r̃n to the sum is the same as that for the
QPSK ML phase estimate (i.e., r̃4

n) whereas in the even symbol intervals (where
the transmitted phase is shifted by π/4 rad), the observable r̃n is phase dero-
tated by π/4 (multiplication by e−jπ/4) before making the same contribution to
the sum.

In reality, the ML carrier phase estimate given above could be deduced im-
mediately from the result for conventional QPSK by recognizing that π/4-QPSK
can be modeled in complex baseband form as a QPSK modulator followed by
multiplication by ej(π/4)In . Thus, the corresponding ML receiver for such a
modulation would be one that first undoes this alternate phase rotation, i.e.,
first multiplies the received signal plus noise samples by e−j(π/4)In , and then fol-
lows that with a conventional QPSK ML receiver. (Note that multiplication by
e−j(π/4)In does not change the statistical nature of the received noise samples.)
Equivalently then, the “observables” inputs to the conventional QPSK portion
of the receiver are given by r̃ne−j(π/4)In and thus ML parameter estimates for
π/4-QPSK are obtained from those for conventional QPSK by replacing r̃n by
r̃ne−j(π/4)In .

For the binary case, the ML estimate remains as before, namely [see Eq. (9-
16)],
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θ̂c2 =
1
2

arg

(
N−1∑
n=0

r̃2
n

)
(9 39)

9.8.3.2 The qLLR and nqLLR Metrics. Analogous to the derivation of the
qLLR metric for the BPSK/QPSK classification, one can show that the identical
metric is appropriate for the BPSK/π/4-QPSK classification, namely,

qLLR =

∣∣∣∣∣
N−1∑
n=0

r̃2
n

∣∣∣∣∣ (9 40)

and likewise for the nqLLR. Of course, the misclassification probability perfor-
mance for the BPSK/π/4-QPSK classification will be different than that previ-
ously found for the BPSK/QPSK classification.

9.9 Noncoherent Classification of Offset Quadrature
Modulations

Offset quadrature modulations are a class of modulations in which the in-
phase (I) and quadrature (Q) modulations are misaligned in time with respect
to one another by one-half of a symbol. Examples of such modulations are offset
quadrature phase-shift keying (OQPSK) [alternatively called staggered QPSK
(SQPSK)] for which the I and Q pulse streams have identical rectangular pulse
shapes and minimum-shift keying (MSK) for which the I and Q pulse streams
have identical half-sinusoidal pulse shapes.7 The customary reason for using an
offset form of quadrature modulation is that it reduces the maximum fluctua-
tion of the instantaneous amplitude of the modulation from 180 deg to 90 deg
since the I and Q modulations cannot change polarity at the same time instant.
This has an advantage on nonlinear transmission channels where the instan-
taneous fluctuation of the modulation amplitude is related to the regeneration
of spectral side lobes of the modulation after bandpass filtering and nonlinear
amplification—the smaller the instantaneous amplitude fluctuation, the smaller
the side-lobe regeneration and vice versa. On an ideal linear AWGN channel,
there is no theoretical advantage of using an offset modulation relative to a con-
ventional one; in fact, the two have identical error probability performance.

In this section, LFs for offset quadrature modulations are derived for use in
the same noncoherent modulation classification applications as treated in the

7 MSK is inherently a continuous phase frequency-shift keyed (CPFSK) modulation but can be
represented as a precoded offset quadrature modulation where the precoder takes the form
of a differential decoder [17, Chapter 10].
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previous sections. Again, both optimum and suboptimum versions of the LFs
are considered, and classification examples are presented based on discriminating
OQPSK from BPSK and MSK from QPSK.

9.9.1 Channel Model and Conditional-Likelihood Function

For transmission of an offset quadrature modulation over an AWGN channel,
the received signal can be written as

r (t) =
√

Pt

( ∞∑
n=−∞

anp (t − nT )

)
cos (ωct + θ)

−
√

Pt

( ∞∑
n=−∞

bnp (t − (n + 1/2) T )

)
sin (ωct + θ) + n (t) (9 41)

where {an} , {bn} are independent, identically distributed (iid) binary (±1) se-
quences, and as before, T is the symbol time, p (t) is a unit power pulse shape
of duration T seconds, Pt is the passband signal power, and n (t) is an AWGN
process with single-sided power spectral density N0 W/Hz. Based on the above
AWGN model, then for an observation of N data (symbol) intervals the CLF is
given by

p
(
r(t)|{an}, {bn}, p(t), θc

)

=
1√
πN0

exp

{
− 1

N0

∫ NT

0

[
r (t) −

√
Pt

( ∞∑
n=−∞

anp (t − nT )

)

× cos (ωct + θc) +
√

Pt

( ∞∑
n=−∞

bnp (t − (n + 1/2)T )

)
sin (ωct + θc)

]2

dt

⎫⎬
⎭

= C exp (−Nγ) exp

{
2
√

Pt

N0

N−1∑
n=0

an

∫ (n+1)T

nT

r (t) p (t − nT ) cos ωctdt

}

× exp

{
−2

√
Pt

N0

N−1∑
n=0

bn

∫ (n+3/2)T

(n+1/2)T

r (t) p (t − (n + 1/2) T ) sinωctdt

}

(9 42)
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where as before γs
�= PtT/N0 = Es/N0 is the symbol energy-to-noise ratio

and C is a constant that will be independent of the classification to be made.
Transforming the received signal of Eq. (9-41) to complex baseband via r (t) =
Re

{
r̃ (t) ejωct

}
and defining the I and Q complex baseband observables (matched

filter outputs) by

r̃In =
1
T

∫ (n+1)T

nT

r̃ (t) p (t − nT ) dt

r̃Qn =
1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) p
(
t − (n + 1/2) T

)
dt

(9 43)

then, letting σ2 = N0/T denote the variance of these outputs, the CLF can be
written in the equivalent form

p (r̃ |{an} , {bn} , θc ) = C exp (−Nγ) exp

{√
Pt

σ2

N−1∑
n=0

anRe
{
r̃Ine−jθc

}}

× exp

{√
Pt

σ2

N−1∑
n=0

bnIm
{
r̃Qne−jθc

}}

= C exp

(
−Nγs + Re

{√
Pt

σ2
e−jθc

N−1∑
n=0

anr̃In

}

+ Im

{√
Pt

σ2
e−jθc

N−1∑
n=0

bnr̃Qn

})
(9 44)

Note that for conventional (non-offset) QPSK we would have r̃In = r̃Qn =
r̃n, and thus letting ejθn = (an + jbn) /

√
2, the CLF of Eq. (9-44) would become

p (r̃ |{an} , {bn} , θc ) = C exp

(
−Nγs + Re

{√
2Pt

σ2
e−jθc

N−1∑
n=0

r̃ne−jθn

})
(9 45)

which is consistent with Eq. (9-7).
Next we average over the I and Q data streams. Before doing so, however,

we first manipulate the form of Eq. (9-44) as follows:
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p (r̃ |{an} , {bn} , θc ) = C exp (−Nγs)
N−1∏
n=0

exp
[
Re

{√
Pt

σ2
e−jθcanr̃In

}]

×
N−1∏
n=0

exp
[
Im

{√
Pt

σ2
e−jθcbnr̃Qn

}]

= C exp (−Nγs) exp
N−1∑
n=0

ln
(

exp
[
Re

{√
Pt

σ2
e−jθcanr̃In

}])

× exp
N−1∑
n=0

ln
(

exp
[
Im

{√
Pt

σ2
e−jθcbnr̃Qn

}])
(9 46)

Now averaging over {an} and {bn} gives

p (r̃ |θc ) = C exp (−Nγs) exp
N−1∑
n=0

ln cosh
(√

Pt

σ2
Re

{
r̃Ine−jθc

})

× exp
N−1∑
n=0

ln cosh
(√

Pt

σ2
Im

{
r̃Qne−jθc

})

= C exp

{
−Nγs +

N−1∑
n=0

[
ln coshxIn (θc) + ln coshxQn (θc)

]}
(9 47)

where

xIn (θc)
�=

√
Pt

σ2
Re

{
r̃Ine−jθc

}

xQn (θc)
�=

√
Pt

σ2
Im

{
r̃Qne−jθc

} (9 48)

Alternatively, defining
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xn (0; θc)
�= xIn (θc) − xQn (θc)

xn (1; θc)
�= xIn (θc) + xQn (θc)

(9 49)

and using the trigonometric identity

ln
{

1
2
[
cosh (X + Y ) + cosh (X − Y )

]}
= ln coshX + ln coshY (9 50)

the CLF of Eq. (9-47) can be manipulated into the compact form

p (r̃ |θc ) = C exp

{
−Nγs +

N−1∑
n=0

ln

(
1
2

1∑
q=0

cosh xn (q; θc)

)}

= C exp (−Nγs)
(

1
2

)N N−1∏
n=0

1∑
q=0

cosh xn (q; θc)
�= CLF′

4 (θc) (9 51)

9.9.2 Classification of OQPSK versus BPSK

As an example of noncoherent classification involving an offset quadrature
modulation, we consider the case of classifying OQPSK versus BPSK. As noted
in previous sections, the LFs that form the LR on which the classification is
based can be arrived at in two ways as follows.

9.9.2.1 Averaging the LFs over the Data Sequences, then over the
Carrier Phase. For OQPSK, the CLF obtained by averaging the LF over
the I and Q data sequences has already been determined in Eq. (9-32). The
corresponding result for BPSK was previously determined as [see Eq. (9-8)]

p (r̃ |θc ) = C exp (−Nγs)
N−1∏
n=0

cosh
(√

2xn (0, θc)
)

�= CLF2 (θc) (9 52)

where for BPSK, xQn (θc) = 0 and, hence, xn (0; θc) = xIn (θc). Thus, averaging
Eqs. (9-51) and (9-52) over θc, assumed to be uniformly distributed over the
interval (0, 2π), then the LR is computed as
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LR =
LF′

4

LF2
=

Eθc

{
CLF′

4 (θc)
}

Eθc

{
CLF2 (θc)

} (9 53)

Computing the LR from Eq. (9-53) must be performed numerically and is
computationally intensive. Furthermore, in order to compute the LFs them-
selves, the parameters Pt and σ2 must be evaluated (to allow computation of the
xn (q; θc)’s).

9.9.2.2 Averaging the LFs over the Carrier Phase, then over the Data
Sequences. Suppose instead we first average the CLF of Eq. (9-44) over the
carrier phase. To see how to accomplish this, we rewrite Eq. (9-44) as follows:

p
(
r̃|{an},{bn}, θc

)

= C exp

⎛
⎜⎝−Nγs + Re

⎧⎪⎨
⎪⎩

√
Pt

σ2

∣∣∣∣∣
N−1∑
n=0

anr̃In

∣∣∣∣∣ e
−j

[
θc−arg

(
N−1∑
n=0

anr̃In

)]⎫⎪⎬
⎪⎭

+Im

⎧⎪⎨
⎪⎩

√
Pt

σ2

∣∣∣∣∣
N−1∑
n=0

bnr̃Qn

∣∣∣∣∣ e
−j

[
θc−arg

(
N−1∑
n=0

bnr̃Qn

)]⎫⎪⎬
⎪⎭

⎞
⎟⎠

= C exp

(
−Nγs +

√
Pt

σ2

∣∣∣∣∣
N−1∑
n=0

anr̃In

∣∣∣∣∣ cos

[
θc − arg

(
N−1∑
n=0

anr̃In

)]

−
√

Pt

σ2

∣∣∣∣∣
N−1∑
n=0

bnr̃Qn

∣∣∣∣∣ sin

[
θc − arg

(
N−1∑
n=0

bnr̃Qn

)])
(9 54)

Applying the trigonometric identity

|X1| cos(θc − φ1) − |X2| sin(θc − φ2)

=
√
|X1|2 + |X2|2 + 2 |X1| |X2| sin (φ2 − φ1) × cos (θc − η)

= |X1 − jX2| cos (θc − η) ;

η = tan−1 |X1| sinφ1 − |X2| cos φ2

|X1| cos φ1 + |X2| sinφ2

(9 55)
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to Eq. (9-54), we get

p
(
r̃|{an},{bn}, θc

)

= C exp

{
−Nγs +

√
Pt

σ2

∣∣∣∣∣
N−1∑
n=0

(anr̃In − jbnr̃Qn)

∣∣∣∣∣ cos (θc − η)

}
(9 56)

which when averaged over the uniform distribution of θc gives the desired result:

p
(
r̃ |{an} , {bn}

)
= C exp (−Nγs) I0

(√
Pt

σ2

∣∣∣∣∣
N−1∑
n=0

(anr̃In − jbnr̃Qn)

∣∣∣∣∣
)

(9 57)

To check the consistency of this result with that for conventional QPSK, we
proceed as follows. The previously derived result for the CLF of M -PSK is
given by Eq. (9-8). For QPSK, we would have e−jθn = (an − jbn) /

√
2, where

an and bn are as defined in Section 9.9.1. Thus,

∣∣∣∣∣
N−1∑
n=0

r̃ne−jθn

∣∣∣∣∣ =
1√
2

∣∣∣∣∣
N−1∑
n=0

r̃n (an − jbn)

∣∣∣∣∣ (9 58)

which when substituted in Eq. (9-8) agrees with Eq. (9-57) when r̃In = r̃Qn = r̃n,
as would be the case for conventional QPSK. Finally, the LF is obtained by
averaging Eq. (9-57) over the data sequences {an} and {bn}, i.e.,

LF′
4 = E{an},{bn}

{
C exp (−Nγs) I0

(√
Pt

σ2

∣∣∣∣∣
N−1∑
n=0

(anr̃In − jbnr̃Qn)

∣∣∣∣∣
)}

(9 59)

which again must be done numerically and is feasible for small values of N .

9.9.3 Suboptimum (Simpler to Implement) Classifiers

In order to simplify the implementation of the ML classifiers, one must resort
to approximations of the nonlinearities involved in their definitions in much the
same way as was done for the conventional (non-offset) modulations. We start
with the CLF averaged first over the data and then the carrier phase. Ignoring
the factor C exp (−Nγs) since in an LR test between two hypotheses it will cancel
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out, then taking the natural logarithm of Eq. (9-51) gives the log-likelihood
function (LLF)

LLF′
4 = lnEθc

{
exp

[
N−1∑
n=0

ln

(
1
2

1∑
q=0

cosh xn (q; θc)

)]}
(9 60)

Applying the approximations

cosh x ∼= 1 +
x2

2

ln (1 + x) ∼= x

(9 61)

gives

LLF′
4 = lnEθc

{
exp

[
N−1∑
n=0

1
2

1∑
q=0

x2
n (q; θc)

2

]}
(9 62)

From Eq. (9-49), we find that

1∑
q=0

x2
n (q; θc)

2
=

1
2

[(
xIn (θc) + xQn (θc)

)2 +
(
xIn (θc) − xQn (θc)

)2
]

= x2
In (θc) + x2

Qn (θc)

=
Pt

σ4

[(
Re

{
r̃Ine−jθc

})2 +
(
Im

{
r̃Qne−jθc

})2
]

(9 63)

Further, using the relations

(
Re {z̃}

)2 =
1
2
|z̃|2 +

1
2
Re

{
z̃2

}

(
Im {z̃}

)2 =
1
2
|z̃|2 − 1

2
Re

{
z̃2

} (9 64)

we obtain after some simplification
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1∑
q=0

x2
n (q; θc)

2
=

Pt

2σ4

[
|r̃In|2 + |r̃Qn|2 +

(
Re

{
r̃2
Ine−j2θc

})2 −
(
Re

{
r̃2
Qne−j2θc

})2
]

(9 65)

which when substituted in Eq. (9-62) gives

LLF′
4 = lnEθc

{
exp

[
N−1∑
n=0

Pt

4σ4

[
|r̃In|2 + |r̃Qn|2 +

(
Re

{
r̃2
Ine−j2θc

})2
]

−
(
Re

{
r̃2
Qne−j2θc

})2

]}
(9 66)

Noting that the first two terms of the summation in Eq. (9-66) do not depend
on θc, then the LLF can be simplified to

LLF′
4 =

Pt

4σ4

N−1∑
n=0

[
|r̃In|2 + |r̃Qn|2

]

+ lnEθc

⎧⎪⎨
⎪⎩exp

⎡
⎢⎣ Pt

4σ4
Re

⎧⎪⎨
⎪⎩

∣∣∣∣∣
N−1∑
n=0

r̃2
In

∣∣∣∣∣ e
−j

(
2θc−arg

{
N−1∑
n=0

r̃2
In

})

−
∣∣∣∣∣
N−1∑
n=0

r̃2
Qn

∣∣∣∣∣ e
−j

(
2θc−arg

{
N−1∑
n=0

r̃2
Qn

})⎫⎪⎬
⎪⎭

⎤
⎥⎦

⎫⎪⎬
⎪⎭ (9 67)

Using a relation analogous to Eq. (9-55), namely,

|X1| cos(2θc − φ1) − |X2| cos(2θc − φ2)

=
√
|X1|2 + |X2|2 − 2 |X1| |X2| cos (φ2 − φ1) × cos (2θc − η)

= |X1 − X2| cos (2θc − η) ;

η = tan−1 |X1| sinφ1 − |X2| sinφ2

|X1| cos φ1 − |X2| cos φ2

(9 68)
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the approximate LLF of Eq. (9-67) finally becomes

LLF′
4 =

Pt

4σ4

N−1∑
n=0

[
|r̃In|2 + |r̃Qn|2

]
+ ln I0

(
Pt

4σ4

∣∣∣∣∣
N−1∑
n=0

(
r̃2
In − r̃2

Qn

)∣∣∣∣∣
)

(9 69)

For BPSK (ignoring the same C exp (−Nγs) factor), we obtain from Eq.
(9-52) the LLF

LLF2 = lnEθc

{
N−1∑
n=0

ln cosh
(√

2xn (0, θc)
)}

(9 70)

where again xn (0; θc) = xIn (θc) since in this case xQn (θc) = 0. Making the
same nonlinearity approximations as in Eq. (9-61), we obtain the approximate
LLF

LLF2 = lnEθc

{
exp

[
N−1∑
n=0

x2
n (0; θc)

]}

= lnEθc

{
exp

[
Pt

σ4

N−1∑
n=0

(
Re

{
r̃2
Ine−j2θc

})2

]}
(9 71)

Using Eq. (9-64), we again obtain after some simplification

LLF2 =
Pt

2σ4

N−1∑
n=0

|r̃In|2 + ln I0

(
Pt

2σ4

∣∣∣∣∣
N−1∑
n=0

r̃2
In

∣∣∣∣∣
)

(9 72)

Finally, then qLLR′ is obtained as the difference of Eqs. (9-69) and (9-72),
namely,

qLLR′ �= LLF2 − LLF′
4 =

Pt

4σ4

N−1∑
n=0

[
|r̃In|2 − |r̃Qn|2

]
+ ln I0

(
Pt

2σ4

∣∣∣∣∣
N−1∑
n=0

r̃2
In

∣∣∣∣∣
)

− ln I0

(
Pt

4σ4

∣∣∣∣∣
N−1∑
n=0

(
r̃2
In − r̃2

Qn

)∣∣∣∣∣
)

(9 73)
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Note once again that for a classification between BPSK and conventional
QPSK where r̃In = r̃Qn = r̃n, Eq. (9-73) would simplify to

qLLR′ �= LLF2 − LLF′
4 = ln I0

(
Pt

2σ4

∣∣∣∣∣
N−1∑
n=0

r̃2
n

∣∣∣∣∣
)

= ln I0

(
γ

2

∣∣∣∣∣
N−1∑
n=0

(
r̃n

σ

)2
∣∣∣∣∣
)

(9 74)

which is in agreement with Eq. (21) of [10].
To get to the final simplification, we now apply the approximation8 ln I0 (x) ∼=

x (x 	 1), resulting in

qLLR′ =
Pt

4σ4

[
N−1∑
n=0

[
|r̃In|2 − |r̃Qn|2

]
+ 2

∣∣∣∣∣
N−1∑
n=0

r̃2
In

∣∣∣∣∣ −
∣∣∣∣∣
N−1∑
n=0

(
r̃2
In − r̃2

Qn

)∣∣∣∣∣
]

(9 75)

Since the true LR should be compared to unity threshold, the true LLR
should be compared to a zero threshold. However, as was previously discussed
in Section 9.3, it is not necessarily true that, due to the nature of the approxima-
tions, the qLLR should also be compared to a zero threshold. Rather, as in the
conventional QPSK/BPSK classification case, the best threshold (to minimize
the probability of misclassification) should be determined by numerical means.
As such, one could equivalently use

qLLR′ =
N−1∑
n=0

[
|r̃In|2 − |r̃Qn|2

]
+ 2

∣∣∣∣∣
N−1∑
n=0

r̃2
In

∣∣∣∣∣ −
∣∣∣∣∣
N−1∑
n=0

(
r̃2
In − r̃2

Qn

)∣∣∣∣∣ (9 76)

which by itself would be independent of Pt and σ2 and adjust the threshold
accordingly based on knowledge of these parameters for optimum misclassifi-
cation probability performance. Alternatively, as was noted for the non-offset
modulation classification case in Section 9.2.2, one could avoid this threshold
dependence on the signal and noise parameters by using a normalized qLLR,
namely,

8 Note that the argument of the Bessel function in Eq. (9-72) is large, corresponding to the
post-detection SNR, i.e., after the N symbols have been accumulated. This differs from the
predetection SNR, γs, which can be assumed to be small in noisy environments.
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nqLLR′ =

N−1∑
n=0

[
|r̃In|2 − |r̃Qn|2

]
+ 2

∣∣∣∣N−1∑
n=0

r̃2
In

∣∣∣∣ −
∣∣∣∣N−1∑
n=0

(
r̃2
In − r̃2

Qn

)∣∣∣∣
N−1∑
n=0

[
|r̃In|2 + |r̃Qn|2

] (9 77)

that like the qLLR of Eq. (9-76) is itself independent of Pt and σ2, but unlike
the qLLR is invariant to scale changes in r̃ and is fairly insensitive to variations
of Pt or σ2 as well.

Finally, we conclude this section by noting that the previously discussed
coarse integral approximation method applied to the individual CLFs in the LR
(see Section 9.2.2) and likewise the GLRT method that replaces the integration
of the CLF over θc by its evaluation at the ML value of θc can also be applied
here in the offset modulation classification case.

9.9.4 Classification of MSK versus QPSK

Another example of classification of an offset quadrature modulation and
a conventional modulation might be MSK versus QPSK. As previously noted,
MSK has an offset quadrature representation in the form of a precoded OQPSK
with identical half-sinusoidal pulse shapes on the I and Q channels. In order to
maintain the power of the transmitted signal as Pt for both modulations, the
mathematical description of the received signal corresponding to transmission of
MSK is in the form of Eq. (9-41), now with

p (t) =
√

2 sin
πt

T
, 0 ≤ t ≤ T (9 78)

Thus, the observables for MSK are

r̃In =
√

2
1
T

∫ (n+1)T

nT

r̃ (t) sin
π(t − nT )

T
dt

r̃Qn =
√

2
1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) sin
π (t − (n + 1/2)T )

T
dt

= −
√

2
1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) cos
π (t − nT )

T
dt

(9 79)

whereas the observables for QPSK are
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r̃In = r̃Qn =
1
T

∫ (n+1)T

nT

r̃ (t) dt (9 80)

Furthermore, from Eq. (9-48), the conditional variables needed for the CLF of
MSK are

xIn (θc)
�=
√

Pt

σ2
Re

{
r̃Ine−jθc

}

=
√

Pt

σ2
Re

{
e−jθc

√
2

1
T

∫ (n+1)T

nT

r̃ (t) sin
π (t − nT )

T
dt

}

xQn (θc)
�=
√

Pt

σ2
Im

{
r̃Qne−jθc

}

= −
√

Pt

σ2
Im

{
e−jθc

√
2

1
T

∫ (n+3/2)T

(n+1/2)T

r̃ (t) cos
π (t − nT )

T
dt

}

(9 81)

whereas those needed for the CLF of QPSK are

xIn (θc)
�=

√
Pt

σ2
Re

{
r̃Ine−jθc

}
=

√
Pt

σ2
Re

{
e−jθc

1
T

∫ (n+1)T

nT

r̃ (t) dt

}

xQn (θc)
�=

√
Pt

σ2
Im

{
r̃Ine−jθc

}
=

√
Pt

σ2
Im

{
e−jθc

1
T

∫ (n+1)T

nT

r̃ (t) dt

} (9 82)

Since for QPSK the CLF, namely, CLF4 (θc), also has the form of Eq. (9-51),
then a classification of MSK versus QPSK would be based on the LR

LR =
LF′

4

LF4
=

Eθc

{
CLF′

4 (θc)
}

Eθc {CLF4 (θc)}
(9 83)

where the xn (0; θc) and xn (1; θc) terms in Eq. (9-49) that define the CLFs in the
numerator and denominator are appropriately expressed in terms of Eqs. (9-81)
and (9-82), respectively.
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9.10 Modulation Classification in the Presence of
Residual Carrier Frequency Offset

Thus far in our discussions of modulation classification, the word “nonco-
herent” was used to mean that the carrier phase was completely unknown, i.e.,
uniformly distributed in the interval [0, 2π), but at the same time the carrier
frequency was assumed to be known exactly. Here we discuss the impact on
modulation classification of imperfect knowledge of the carrier frequency, i.e.,
the presence of a fixed residual carrier frequency offset that may exist after fre-
quency correction. In particular, we shall point out the degrading effect of this
frequency error on the behavior of the previously derived modulation classifiers
and then propose an ad hoc modification of the nqLLR to cope with the problem.

When a residual radian frequency error ∆ω is present, the received signal of
Eq. (9-1) is modified to

r̃ (t) =
√

2Pt

∞∑
n=−∞

ej(θn+θc+∆ωt)p (t − nT − εT ) + ñ (t) (9 84)

or, equivalently, under the assumption of perfect symbol timing, the observables
of Eq. (9-3) become

r̃n =
√

2Pt

⎛
⎜⎝ sin

∆ωT

2
∆ωT

2

⎞
⎟⎠ ej(θn+θc+n∆ωT ) + ñn, n = 0, · · · , N − 1 (9 85)

Based on Eq. (9-85), we see that, aside from a sin x/x amplitude factor, in effect
the constellations on which the likelihood function is based are discretely rotating
by ∆ωT rad during each symbol interval of the N -symbol observation time. So
for example, if one attempts to use the nqLLR modulation classifier of Eq. (9-18)
on the received signal in Eq. (9-84), the term r̃M

n in the numerator of Eq. (9-18)
still removes the M -PSK modulation; however, its signal component now con-
tains the phase factor ejMn∆ωT , whose argument changes linearly throughout
the summation on n. Thus, even in the absence of noise, one is no longer sum-
ming a set of complex observables that are aligned in phase but rather summing
a set of complex observables whose phase is uniformly rotating (by increments
of M∆ωT rad) around the circle. In fact, if the residual frequency error-symbol
time product is such that M∆ωT = 2π/N , then in so far as the numerator of
Eq. (9-18) is concerned, the constellation will have moved through a complete
revolution during the observation, thereby confusing the classification of M -PSK
versus M ′-PSK.
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To resolve this dilemma, we need to modify the classifier in such a way as to
cancel out the effect of the frequency error in the terms being summed in the
numerator of the LLR so that once again they are aligned in phase. An ad hoc
solution can be obtained by replacing r̃M

n with r̃M
n

(
r̃∗n−1

)M . Since the frequency
error has no effect on the terms in the denominator summation of Eq. (9-18), to
maintain the needed normalization for independence of the metric on Pt and σ2,
we propose replacing |r̃M

n | by |r̃M
n

(
r̃∗n−1

)M |. Thus, in the presence of residual
frequency error, the modification of Eq. (9-18) would become

nqLLR =

∣∣∣∣N−1∑
n=1

r̃M
n

(
r̃∗n−1

)M
∣∣∣∣

N−1∑
n=1

∣∣∣r̃M
n

(
r̃∗n−1

)M
∣∣∣ (9 86)

Since, compared with Eq. (9-18), this metric applied to BPSK/QPSK classifica-
tion now involves fourth-order (as opposed to second-order) signal × noise and
noise × noise products, one anticipates a degradation in performance even in the
case of zero residual frequency error. To compensate for this additional degra-
dation, one would need to increase the length of the observable, i.e., increase N .
It should also be pointed out that the optimized decision thresholds computed
as in Section 9.3 will be different for the nqLLR of Eq. (9-86) than those for the
nqLLR of Eq. (9-18). However, the procedure needed to perform the empirical
threshold optimization would still follow the same steps as those discussed in
Section 9.3.2.
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Appendix 9-A

Parameter Estimation for the GLRT

To obtain the analytical form of the ML estimates of the unknown param-
eters in terms of the observables, one must make certain approximations to the
nonlinear functions involved in Eqs. (9-28) and (9-29). In particular, for small
arguments (e.g., low SNR), applying the approximations ln(1 + x) ∼= x and
cosh(x) ∼= 1 + x2/2 to Eq. (9-28) and letting r̃n (ε) = rI,n (ε) + jrQ,n (ε) gives

θ̂c2, ε̂2 = argmax
θc,ε

N−1∑
n=0

1
2

(√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

})2

= argmax
θc,ε

N−1∑
n=0

1
2

(√
2Pt

σ2

)2

(rIn (ε) cos θc + rQn (ε) sin θc)
2

= argmax
θc,ε

N−1∑
n=0

[
1
2

(
r2
In (ε) + r2

Qn (ε)
)

+
1
2

(
r2
In (ε) − r2

Qn (ε)
)
cos 2θc

+ rIn (ε) rQn (ε) sin 2θc

]

= argmax
θc,ε

N−1∑
n=0

[
1
2

(
r2
In (ε) − r2

Qn (ε)
)
cos 2θc + rIn (ε) rQn (ε) sin 2θc

]

= argmax
θc,ε

1
2

N−1∑
n=0

Re
{
r̃2
n (ε) e−j2θc

}
(A-1)



312 Chapter 9

Equivalently, for a given ε, θ̂c2 is the solution of

d

dθc

N−1∑
n=0

[
1
2
(
r2
In (ε) − r2

Qn (ε)
)
cos 2θc + rIn (ε) rQn (ε) sin 2θc

]

= −1
2

sin 2θc

N−1∑
n=0

(
r2
In (ε) − r2

Qn (ε)
)

+ cos 2θc

N−1∑
n=0

rIn (ε) rQn (ε)

=
1
2

N−1∑
n=0

Im
{
r̃2
n (ε) e−j2θc

}
= 0 (A-2)

or

θ̂c2 = tan−1

N−1∑
n=0

rIn (ε) rQn (ε)

1
2

N−1∑
n=0

(
r2
In (ε) − r2

Qn (ε)
) (A-3)

which can be written in the simpler form

θ̂c2 =
1
2

arg

(
N−1∑
n=0

r̃2
n (ε)

)
(A-4)

This estimate of θc is a generalization of the ML estimate when ε = 0 as given
in Eq. (9-16), for the special case of H = 2.

Similarly, applying the same approximations of the nonlinearities to
Eq. (9-29) gives

θ̂c4,ε̂4

= argmax
θc,ε

N−1∑
n=0

1
2

[(√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

})2

+
(√

2Pt

σ2
Im

{
r̃n (ε) e−jθc

})2
]

= argmax
θc,ε

N−1∑
n=0

1
2

(√
2Pt

σ2

)2

|r̃n (ε)|2 (A-5)

which unfortunately is independent of θc. Thus, we see that for QPSK we must
take the next term in the approximation of the hyperbolic cosine function, i.e.,
we should use
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ln (1 + x) ∼= x

cosh x ∼= 1 +
x2

2
+

x4

24

(A-6)

When this is applied to Eq. (9-29), we obtain

θ̂c4, ε4

= argmax
θc,ε

N−1∑
n=0

1
48

[(√
2Pt

σ2
Re

{
r̃n (ε) e−jθc

})4

+
(√

2Pt

σ2
Im

{
r̃n (ε) e−jθc

})4
]

= argmax
θc,ε

N−1∑
n=0

1
48

(√
2Pt

σ2

)4 {[(
Re

{
r̃n (ε) e−jθc

})2
+

(
Im

{
r̃n (ε) e−jθc

})2
]2

−2
(
Re

{
r̃n (ε) e−jθc

})2 (
Im

{
r̃n (ε) e−jθc

})2
}

= argmin
θc,ε

N−1∑
n=0

(
Re

{
r̃n (ε) e−jθc

})2 (
Im

{
r̃n (ε) e−jθc

})2
(A-7)

After some manipulation it can be shown that, analogous to Eq. (A-4), the ML
estimate of θc for a given ε is given by

θ̂c4 =
1
4

arg

(
N−1∑
n=0

r̃4
n (ε)

)
(A-8)

that again is a generalization of Eq. (9-16) to nonzero ε̂, for the special case
of H = 4.

For the ML estimates of symbol timing, we return to the exact forms in
Eqs. (9-28) and (9-29). For example, for BPSK and a given value of θc, differ-
entiating Eq. (9-28) (with ε replaced by ε̂) with respect to ε̂ and equating the
result to zero gives the following:

d

dε̂

N−1∑
n=0

ln cosh
[√

2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}]

=
N−1∑
n=0

(
tanh

[√
2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}]) (
d

dε̂

[√
2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}])

=
N−1∑
n=0

Re
{
r̃′n (ε̂) e−jθc

} (
tanh

[√
2Pt

σ2
Re

{
r̃n (ε̂) e−jθc

}])
= 0 (A-9)
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where

r̃′n (ε̂) =
2
T

∫ (n+1−ε̂)T

(n−ε̂)T

r̃ (t)
d

dε̂
p (t − nT − ε̂T ) dt (A-10)

= − 2
T

∫ (n+1−ε̂)T

(n−ε̂)T

r̃ (t)
d

dt
p (t − nT − ε̂T ) dt (A-11)

Unfortunately Eq. (A-10) does not yield a closed-form solution for ε̂. A similar
situation takes place for QPSK, namely,

d
dε̂

N−1∑
n=0

ln

[
1
2 cosh

[√
2Pt

σ2 Re{r̃n(ε̂)e−jθc}
]
+

1
2 cosh

[√
2Pt

σ2 Im{r̃n(ε̂)e−jθc}
]]

=

N−1∑
n=0

sinh

(√
2Pt

σ2 Re{r̃n(ε̂)e−jθc}
)

Re{r̃′n(ε̂)e−jθc}+ sinh

(√
2Pt

σ2 Im{r̃n(ε̂)e−jθc}
)

Im{r̃′n(ε̂)e−jθc}
cosh

[√
2Pt

σ2 Re{r̃n(ε̂)e−jθc}
]

+ cosh

[√
2Pt

σ2 Im{r̃n(ε̂)e−jθc}
]

= 0 (A-12)

If one now applies the approximations

tanhx ∼= x

sinhx ∼= x

cosh x ∼= 1

(A-13)

then Eqs. (A-9) and (A-12) simplify respectively to

N−1∑
n=0

Re
{
r̃′n (ε̂) e−jθc

}
Re

{
r̃n (ε̂) e−jθc

}

=
N−1∑
n=0

[
Re

{
r̃′n (ε̂)

(
r̃n (ε̂)

)∗} + Re
{
r̃′n (ε̂) r̃n (ε̂) e−2jθc

}]
= 0 (A-14)

and
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N−1∑
n=0

[
Re

{
r̃n (ε̂) e−jθc

}
Re

{
r̃′n (ε̂) e−jθc

}
+ Im

{
r̃n (ε̂) e−jθc

}
Im

{
r̃′n (ε̂) e−jθc

}]

=
N−1∑
n=0

Re
{
r̃n (ε̂) (r̃′n (ε̂))∗

}
= 0 (A-15)

both of which require numerical solution for their respective ML estimates ε̂2

and ε̂4. Note from Eq. (A-15) that the ML estimate of symbol timing for the
QPSK hypothesis is independent of the carrier phase estimate.

Appendix 9-B

ML Estimation of Carrier Phase for
π/4-QPSK Modulation

To obtain the estimator of carrier phase needed for the GLRT involving
π/4-QPSK modulation, we need to find the solution of

θ̂c,π/4−4 = arg max
θc

[
N−1∑

n=1,3,5,···
ln

(
1
2

[
cosh

[
xn (0; θc)

]
+ cosh

[
xn (1; θc)

]])

+
N−2∑

n=0,2,4,···
ln

(
1
2

[
cosh

[
yn (0; θc)

]
+ cosh

[
yn (1; θc)

]])]
(B-1)

with xn (q; θc) and yn (q; θc) as defined in Eq. (9-32). Applying the small argu-
ment approximations ln (1 + x) ∼= x, cosh x ∼= 1 + x2/2 + x4/24 and ignoring
second-order terms (since they contribute terms that do not depend on θc) gives
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θ̂c,π/4−4

= arg max
θc

⎡
⎣ 1

48

N−1∑
n=

1,3,5,···

[(√
2Pt

σ2
Re

{
r̃ne−jθc

})4

+
(√

2Pt

σ2
Im

{
r̃ne−jθc

})4
]

+
1
48

N−2∑
n=

0,2,4,···

[(√
2Pt

σ2
Re

{
r̃ne−jπ/4e−jθc

})4

+
(√

2Pt

σ2
Im

{
r̃ne−jπ/4e−jθc

})4
]⎤
⎦

= arg max
θc

⎡
⎣ 1

48

N−1∑
n=

1,3,5,···

⎧⎨
⎩

[(√
2Pt

σ2
Re

{
r̃ne−jθc

})2

+
(√

2Pt

σ2
Im

{
r̃ne−jθc

})2
]2

−2
(√

2Pt

σ2
Re

{
r̃ne−jθc

})2 (√
2Pt

σ2
Im

{
r̃ne−jθc

})2
}

+
1
48

N−2∑
n=

0,2,4,···

⎧⎨
⎩

[(√
2Pt

σ2
Re

{
r̃ne−jπ/4e−jθc

})2

+
(√

2Pt

σ2
Im

{
r̃ne−jπ/4e−jθc

})2
]2

−2
(√

2Pt

σ2
Re

{
r̃ne−jπ/4e−jθc

})2 (√
2Pt

σ2
Im

{
r̃ne−jπ/4e−jθc

})2
}]

(B-2)

or equivalently

θ̂c,π/4−4 = arg min
θc

[
N−1∑

n=1,3,5,···

(
Re

{
r̃ne−jθc

})2 (
Im

{
r̃ne−jθc

})2

+
N−2∑

n=0,2,4,···

(
Re

{
r̃ne−jπ/4e−jθc

})2 (
Im

{
r̃ne−jπ/4e−jθc

})2
]

(B-3)

Letting r̃n = |r̃n| ejφn , the above becomes
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θ̂c,π/4−4 = arg min
θc

[
N−1∑

n=1,3,5,···
|r̃n|4 cos2(φn − θc) sin2(φn − θc)

+
N−2∑

n=0,2,4,···
|r̃n|4 cos2

(
φn − π

4
− θc

)
sin2

(
φn − π

4
− θc

)]

= arg min
θc

[
1
4

N−1∑
n=1,3,5,···

|r̃n|4 −
1
8

N−1∑
n=1,3,5,···

|r̃n|4 cos
[
4(φn − θc)

]

−1
8

N−2∑
n=0,2,4,···

|r̃n|4 cos
[
4

(
φn − π

4
− θc

)]]

= arg max
θc

[
N−1∑

n=1,3,5,···
|r̃n|4 cos

[
4(φn − θc)

]

+
N−2∑

n=0,2,4,···
|r̃n|4 cos

[
4

(
φn − π

4
− θc

)]]
(B-4)

This can also be written in the form

θ̂c,π/4−4

= arg max
θc

[
Re

{
N−1∑

n=1,3,5,···
r̃4
n

}
Re

{
ej4θc

}
+ Im

{
N−1∑

n=1,3,5,···
r̃4
n

}
Im

{
ej4θc

}

+ Re

{
N−2∑

n=0,2,4,···
r̃4
n

}
Re

{
ej4(π

4 +θc)
}

+ Im

{
N−2∑

n=0,2,4,···
r̃4
n

}
Im

{
ej4(π

4 +θc)
}]

= arg max
θc

{∣∣∣∣∣
N−1∑

n=1,3,5,···
r̃4
n

∣∣∣∣∣ cos

[
arg

(
N−1∑

n=1,3,5,···
r̃4
n

)
− 4θc

]

+

∣∣∣∣∣
N−2∑

n=0,2,4,···
r̃4
n

∣∣∣∣∣ cos

[
arg

(
N−2∑

n=0,2,4,···
r̃4
n

)
− π − 4θc

]}

= arg max
θc

{∣∣∣∣∣
N−1∑

n=1,3,5,···
r̃4
n

∣∣∣∣∣ cos

[
arg

(
N−1∑

n=1,3,5,···
r̃4
n

)
− 4θc

]

−
∣∣∣∣∣

N−2∑
n=0,2,4,···

r̃4
n

∣∣∣∣∣ cos

[
arg

(
N−2∑

n=0,2,4,···
r̃4
n

)
− 4θc

]}
(B-5)
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However, using the trigonometric identity

A cos (a − x) − B cos (b − x)=(A cos a − B cos b) cos x + (A sin a − B sin b) sinx

=
√

(A cos a − B cos b)2 + (A sin a − B sin b)2 cos (x − η) (B-6)

η = tan−1 A sin a − B sin b

A cos a − B cos b

in Eq. (B-5) gives

θ̂c,π/4−4 = arg max
θc

[
cos (4θc − η)

]
(B-7)

where

η = tan−1

Im

{
N−1∑

n=1,3,5,···
r̃4
n

}
− Im

{
N−2∑

n=0,2,4,···
r̃4
n

}

Re

{
N−1∑

n=1,3,5,···
r̃4
n

}
− Re

{
N−2∑

n=0,2,4,···
r̃4
n

} (B-8)

Finally then,

θ̂c,π/4−4 =
1
4

tan−1

Im

{
N−1∑

n=1,3,5,···
r̃4
n

}
− Im

{
N−2∑

n=0,2,4,···
r̃4
n

}

Re

{
N−1∑

n=1,3,5,···
r̃4
n

}
− Re

{
N−2∑

n=0,2,4,···
r̃4
n

} (B-9)

=
1
4

tan−1

Im
{

N−1∑
n=0

(−1)n−1
r̃4
n

}

Re
{

N−1∑
n=0

(−1)n−1
r̃4
n

} =
1
4

arg

(
N−1∑
n=0

(−1)n−1
r̃4
n

)

(B-10)

=
1
4

arg

(
N−1∑
n=0

(
r̃nej(π/4)(n−1)

)4
)

=
1
4

arg

(
N−1∑
n=0

(
r̃ne−j(π/4)In

)4
)
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where In is the indicator variable defined by

In =
{

0, n odd
1, n even (B-11)


